US5716032: Unmanned aerial vehicle automatic landing system An automatic landing system for guiding an unmanned aerial vehicle along a predetermined path to a predetermined point on the ground. The system includes an image processing means resident in the motion compensation processor that computes aerial vehicle parameters. The computed parameters are altitude, changes in altitude, changes in pitch and yaw angles, roll angle and changes thereto, and changes in cross range and down range position. These computations are based on the movement of elements in the video of an imaging sensor onboard the aerial vehicle. The motion compensation processor also measures the distance (in pixels or picture elements) between two beacons placed a known distance apart on either side of the apparent touchdown point. A recovery control processor uses these parameters to compute both desired and actual altitude as a function of range from the vehicle to the apparent point of touchdown and to provide offset error in azimuth from the desired flight path to the landing area. The recovery control processor also computes commands for the automatic pilot on the unmanned aerial vehicle which corrects the aerial vehicle's flight path. The recovery control processor will normally be located with the motion compensation processor, either on the ground or on the aerial vehicle. The video image can either be brought to the ground over a data link or the image processing can be performed onboard the aerial vehicle. US6122572: Autonomous command and control unit for mobile platform In a vehicle designed for the execution of a mission, a programmable decision unit capable of managing and controlling the execution of the mission by utilizing a plurality of subsystems and database capable of holding and managing data including pre-stored data and data acquired by and received from the plurality of subsystems. The programmable decision unit includes a mission plan (MP) for accomplishing the execution of the mission includes a succession of iterations that include each assignment of a mission segment associated with a current mission stated to one or more of the subsystems. Each iteration further includes receipt from the subsystems report data which include data indicative of the execution status of the mission segment by the corresponding subsystem; and evaluation of the report data for determining either normal behavior or an exceptional event. The programmable decision unit is capable of managing and controlling the execution of the mission in an autonomous fashion whereby the vehicle becomes an autonomous vehicle. US6584382: Intuitive vehicle and machine control A control machine/operator interface and a method for controlling complex machines or moving vehicles are provided. The method uses a high level of automation and the man-machine interface to achieve an intuitive control method and a substantial reduction in required operator skill level and training. The method also makes the operation of such machine or vehicle virtually the same when the operator is in the machine or vehicle as when the machine or vehicle is controlled from a remote location. US6626398: Unmanned biplane for airborne reconnaissance and surveillance having staggered and gapped wings The present invention provides an unmanned airborne reconnaissance vehicle having a fuselage, a forward wing pair and a rearward wing pair vertically separated by a gap and staggered fore and aft therebetween such that a general biplane configuration is formed. The present invention provides a pair of wing tip plates for joining the wing tips of the forward and rearward wings. The unmanned airborne reconnaissance vehicle of the present invention includes a power plant to propel the vehicle through the air and a generally T-shaped tail having a vertical stabilizer including a rudder and a full span elevator. US6711477: Automatic flight envelope protection for uninhabited air vehicles: method for determining point in flight envelope A system and method for detecting if a UAV is operating within its flight envelope. The invention includes defining the flight envelope of the UAV. The operating state of the UAV is identified from a present time to a future elapsed time. The invention determines if the UAV will be within its flight envelope at the end of the elapsed time in the future. It can then command the UAV to maintain operation within the flight envelope if the operating state determined is outside the flight envelope. US6728630: Method for providing route instructions to a mobile vehicle The invention provides a method of providing route instructions to a mobile vehicle. A communication channel may be established between a client vehicle and a server. The server may be provided the location of the vehicle and it's destination. The server may calculate a route to reach the destination and store the route. One or more maneuver instructions may be downloaded to the vehicle, and the communication channel may then be terminated until the vehicle requires more maneuver instructions. A communication channel may then be reestablished between the vehicle and server and more maneuver instructions may be downloaded to the vehicle. US6748316: Apparatus and method for presenting navigation information based on instructions described in a script A navigation script includes time and point information for navigation and information for guidance, and describes an instruction sequence which can represent these information in time series in a mark-up language. According to the structured data generated from the navigation script, an instruction corresponding to a current time or point is executed, so that information for guidance to be presented is output.